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Abstract. It is shown that the time evolution equations governing the behaviour of the 
thermodynamic fluxes in extended irreversible thermodynamics possess a generalised 
Hamiltonian structure. 

1. Introduction 

Extended irreversible thermodynamics has fuelled much interest during the two last 
decades (e.g. Casas et a1 1984, Jou et a1 1988). Extended irreversible thermodynamics 
was conceived out of the necessity to extend classical irreversible thermodynamics 
(Onsager 1931, Prigogine 1961, De Groot and  Mazur 1962) whose domain of application 
is limited to steady linear constitutive equations. The second motivation of extended 
irreversible thermodynamics was to avoid the unpleasant property of propagation of 
thermal, concentration and  velocity disturbances with an  infinite velocity. This charac- 
teristic is inherent to the Fourier, Fick and  Navier-Stokes equations as these lead to 
parabolic equations of balance. 

Extended irreversible thermodynamics is particularly well suited for describing 
high frequency and  small wavelength phenomena such as ultrasonic propagation in 
gases and  metals and light and neutron scattering (Lebon and Cloot 1989, Valesco 
and  Garcia-Colin 1983). The formalism is also useful for describing systems with large 
relaxation times like dielectrics (Castillo and  Garcia-Colin 1986), viscoelastic and 
non-Newtonian fluids (Lebon and  Cloot 1988, Lebon er a1 1990, Perez-Garcia et a1 
1989). Extended irreversible thermodynamics also helped to settle the domain of 
validity in the classical theory of irreversible processes by defining in a precise manner 
the limits of application of the local equilibrium hypothesis and the Onsager-Casimir 
reciprocal relations. 

The basic assumption in extended irreversible thermodynamics is to enlarge the 
space of the basic variables by completing the classical set formed by the mass, 
momentum and energy by means of extra variables taking the form of thermodynamic 
fluxes such as the mass flux, the heat flux and the flux of momentum. The second 
hypothesis is to assume that these extra variables satisfy non-steady (generally non- 
linear) evolution equations. Thirdly the existence of a non-equilibrium entropy with 
a non-negative production is postulated. The foundations for the above three hypotheses 
of extended irreversible thermodynamics are deeply rooted in the basic laws of kinetic 
theory, statistical mechanics and information theory (Jou  et a1 1988). 
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The purpose of this paper is to use still another type of argument to provide a 
foundation for the second and  third hypotheses. The argument is based on the 
observation that classical irreversible thermodynamics, as well as other well established 
formalisms, like Boltzmann’s kinetic theory or Maxwell’s electrodynamic equations, 
possess the so-called generalised Hamiltonian structure (Clebsh 1985, Iwinski et a1 
1976, Morrison 1980, 1983, Dzyaloshinskii er a1 1980, Grmela 1984, 1986, 1988, 
Kaufman 1984). The properties of the solutions of equations with a Hamiltonian 
structure have been interpreted by Grmela (1986, 1988) as an  expression of the compati- 
bility of the time evolution equations with equilibrium thermodynamics. There are 
other reasons that militate in favour of a Hamiltonian description. It is very attractive 
to formulate the behaviour of a whole class of phenomena in Hamiltonian form because 
of its conciseness and its physical contents. Indeed the whole set of balance equations 
is now replaced by one single relation and  furthermore, the generating functional of 
each particular problem may generally be identified with a well-defined physical 
quantity like the energy, the entropy, the free Gibbs energy, etc. (Grmela 1989). 
Moreover, there exist many results and methods of solutions typically developed for 
general Hamiltonian systems (e.g. Arnold 1965, Holm et a1 1985) which can be of 
direct use to analyse the solutions of the basic equations of extended irreversible 
thermodynamics. 

It is shown in this paper that the Hamiltonian structure is preserved when the state 
of the basic variables is enlarged in the way advocated in extended irreversible 
thermodynamics. It is demonstrated in section 3 that the proposed Hamiltonian 
structure leads to the time evolution equations that are derived in Jou et a1 (1988). 
The advantages gained by using a generalised Hamiltonian formalism in extended 
irreversible thermodynamics are discussed in the concluding section 4. For complete- 
ness, the generalised Hamiltonian structure of classical irreversible thermodynamics 
will be recalled in section 2 .  

2. Generalised Hamiltonian structure of classical irreversible thermodynamics 

We briefly recall here the generalised Hamiltonian structure of classical irreversible 
thermodynamics and also introduce the terminology and  notation used in this paper. 
The state variables in classical irreversible thermodynamics are the five hydrodynamic 
fields: mass density p( r ,  t ) ,  energy e ( r ,  t ) ,  and momentum u(r, t ) .  

We first consider the non-dissipative part of the balance laws and  demonstrate their 
Hamiltonian structure. We say that the evolution of a variable is non-dissipative when 
the corresponding quantity is conserved (no production term in the balance law). 

It is assumed that there exists an entropy function 

S ( t ) =  d r s ( r ,  t )  (1) i 
such that the entropy density s ( r ,  1 )  is a convex function of the variables p, e, U and 
that for an  isolated system 

_-  - 0. 
d S  
d t  

It is also supposed that there is a one-to-one transformation between the variables 
( p ,  e, U )  and ( p ,  s, U )  for all r and r. According to the classical terminology (Callen 
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1985), when s is the dependent and ( p ,  e, U )  the independent variables, we shall refer 
to the analysis as being the entropy representation. If the energy is the dependent and  
( p ,  s, U )  the independent variables, we shall talk about energy representation, 

Let A denote a sufficiently regular functional of the fields p, s, U. Clearly, if we 
know the time evolution equations for p, s, U,  we also know the time evolution of A, 
namely 

where a ,  stands for the partial time derivative and V for the volume, supposed to be 
fixed, confining the system under consideration, S is the Volterra functional differenti- 
ation. It is known that S A / S p ( r ,  t )  reduces to the usual partial derivative if the function 
p(r, t )  is replaced by a finite dimensional vector. We note that if in particular 

A([)  = d r a [ p ( r ,  t ) ,  s(r, 11, ~ ( r ,  ?)I I 
where a is a local sufficient regular function of p, s, U (which means that a evaluated 
at r depends only on the fields p, s, U at r and not at other different position vectors), 
then the Volterra derivatives reduce to the usual partial derivatives: 

1 SA 1 SA 1 SA 
v Sp(r, t )  - v Ss(r, t )  - v Su(r, t )  - a~ 

a,( = aa /dp( r ,  1 ) )  etc denote the partial derivation of a with respect to p, etc. 
Of course, if we know the time evolution equation for A and require it to hold for 

all sufficient regular functional A, then we can derive the time evolution equations for 
the fields p, s, U. If in addition the time evolution for A can be cast into the form 

dA 1 
d t  V - { A , G }  (4) 

where {A, G }  is called a Poisson bracket and G a generating functional, then the time 
evolution equations for p, s, U are said to possess the Hamiltonian structure. We recall 
that {A, G }  is a Poisson bracket if the following three properties are satisfied: 

( i )  {A, G }  is a linear function of the Volterra functional derivatives of A and G 
with respect to the fields p, s, U respectively; 

(ii) {A, G }  = -{G, A} (antisymmetry); 
(iii) {A,{B,  C}}t{B,{C,A}}+{C,{A,B}}=O (Jacobi identity). 
Let us select as Poisson bracket 

{ A , G } = -  j d r p  [(Z) " - (E)  "3 
V 6p , h  Sp , h  6uh 

+ I l d r u , [ ( = )  V Su, . I  %--(E) SuL , h  ""1 auk 

+ L j d r s [ ( z )  V h auh , h  "3 S U h  

and identify the generating functional G with the total energy 



3344 M G r m e l a  and G Lebon 

From now on, Cartesian coordinates and the summation convention on repeated indices 
are used, a comma stands for the partial derivation with respect to the spatial coordin- 
ates. We now show that equation (4)  is identical to the non-dissipative part of the 
balance laws of classical irreversible thermodynamics togeher with local equilibrium 
relations among the fields p, e, s, U and p ( p is the local pressure). Performing integration 
by parts and  introducing boundary conditions that guarantee that all the integrals over 
the surface bounding the system are zero, we can rewrite equation (4) as 

Since it is demanded that equation (3) holds for any functional A, one has 

d,p = - ( p e u k ) , h  3,s = - (se,, ,  ) , A  (6) 

drub = - (uhe , , ) . ,  - P ( ~ ~ ) , A  - u , ( e u , ) , h  - s ( e 5 ) , h .  

In order that expressions ( 6 )  represent the non-dissipative parts of the balance laws 
of classical irreversible thermodynamics one has to make the following identifications: 

1 

P 
e,, =- U L  = U A  ( 7 )  

where uI, is the velocity field, and 

P,k = P ( e , ) , h + u , ( e . , ) , h + s ( e , ) , , .  

Equation (8) together with 

e.k =e ,p ,h+e, i (u , ) ,k+e,s ,h  

implies 

(9) 

p = - e  + se, +pep  + uAeu, (10) 

which is nothing but the Euler local equilibrium relation. 
Now we turn our attention to the dissipative part of the evolution equations. For 

the sake of simplicity, we shall from now on limit the analysis to an  incompressible 
fluid at rest. It is then an  easy task to see that the equations of classical irreversible 
thermodynamics are recovered at the condition to replace equation (4) by 

G stands for the total free energy 

G =  d r ( e -  Tos)  i 
with To a constant temperature while [A, GI is given by 
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where 0 is the so-called dissipative potential introduced by Moreau (1970) and Edelen 
(1972). The dissipative potential is required to obey the following properties: 

( i )  Q(0) = 0; 
(i i)  Q, reaches its minimum at zero; 
(iii) -0 is convex in the neighbourhood of zero. 
These properties are met if 

d S  -> 0. 
d t  

The form of the bracket [A,  GI that includes the viscosity may be found in Grmela’s 
paper (1989) to which the reader is referred for more details. 

3. Generalised Hamiltonian structure of extended irreversible thermodynamics 

We proceed now to the identification of the Hamiltonian structure of the governing 
equations of extended irreversible thermodynamics. Following Jou et a1 (1988), we 
select as state variables the energy field e(  r, t ) ,  the heat flux field q (  r, t )  and the viscous 
pressure tensor field P ( r ,  t ) .  The tensor P is supposed to be symmetric. For the sake 
of simplicity, we do not split the tensor P into a diagonal and a traceless part. 

The problem that we intend to solve is the following. We search for a generating 
functional G, a Poisson bracket { , }, and a dissipation bracket [ , 1, all defined in the 
state space composed by the fields e ( r ,  t ) ,  q ( r ,  t ) ,  P ( r ,  t )  such that 

( i )  the generating functional has the physical meaning of a free energy; 
(i i)  equation (1 l ) ,  linearised about an equilibrium state, is equivalent to the govern- 

ing time-evolution equations of extended irreversible thermodynamics as given for 
instance in Jou et a1 (1988). 

At this point, it is worth stressing that the problem has not necessarily a unique 
solution. This is due to the non-uniqueness of the Poisson { , } and dissipative [ , ] 
brackets. To make the choice unique, we would have to introduce supplementary 
restrictions; for instance, for the dissipative function defined by equation (13), one 
should add other requirements which complement the three properties of the dissipative 
function listed after equation (13). Moreover, non-uniqueness is in no way related to 
complete integrability. To each Hamiltonian structure correspond different evolution 
equations. These equations will only coincide when the analysis is restricted to equi- 
librium and close to equilibrium states (Grmela 1984, 1986). 

The way to determine the appropriate Poisson bracket is to follow three different 
routes. Firstly, we can try to present the state space as dual of the semidirect product 
of a Lie algebra and a direct sum of vector spaces. For the state space considered in 
section 2, the Lie algebra is the Lie algebra of vector fields on R3 and the vector spaces 
are the modules of differential forms on which the vector fields act naturally by Lie 
derivatives: the Poisson bracket arises then naturally (Holm er a1 1985). In the case 
of extended thermodynamics we do not see any physical ground to associate the 
corresponding state space with a Lie algebra structure (notice that the velocity field 
that is associated with the Lie algebra of vector fields on R3 is missing in our state 
space). Therefore we shall not follow this route here. The second route starts by 
representing the states variables e ( r ,  r), q ( r ,  r ) ,  P ( r ,  t )  in terms of moments of a 
one-particle distribution function. Next we use the Poisson bracket associated with 
the Hamiltonian structure of the one-particle distribution kinetic equations (Morisson 
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1983, GrmeIa 1984, I986), By restricting the funetionals A, b appearing in the Poiason 
braebet to depend only on the oneqmrtiele distribution funetions throughout their 
dependence on the moments dr; t ) ,  q ( r ,  I), P(r,  I), we obtain a brneket involving these 
moments, Tpks braeket will, however, also eontain &er moments. 16 i s  therefore 
n e e e ~ a r y  to look for a elosure relation expressing these other moments in berms of 
the bask moments d r ,  r ) ,  q ( r ,  t ) ,  R r ,  r h  The Jaeobi identity may be then regnfded 
a6 an equation witk the elosure considered a8 an unknown funstlon, Unfortunately, 
the explielt formulation of s u ~ h  an equation requires a tremendous amount of calaultl- 
tion and therefore in the present paper, we have preferred to follow a third route. The 
latter i s  based on a trial and erfor teehnique, We suggest the fofm sf a br~oket, oheek 

dAIdt = ( I /  V) (A ,  GI represent the governing equntisns OF extended irrevmible  the^ 
modynamies, 

explicitly that i t  51 hi660n bracket and verify CrlSS that eqUati0fls O f  the fofm 

3, I, 7410 nmdissipaitw i i m  gwluttun 

In the absence of dissipation. the toto! entropy i6  wnserved and one has 
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of theorem 1 in Morrison ( 1983), we B ~ E  that if kl and pn are independent of the state 
variables, then the quantity {A,  G} meets the conditions required to be identified with 
a Poisson bracket. 

Performing integration by parts, equation (19) can be east into the form 

It follows from expression (17) that the evolution equation (18) for A can be written 
as 

Since relation (21) must hold for all A, it is inferred that, by identification of the 
cstReients of SA/ Ss, BA/ 8qk and SA/ S A ,  respectively, 

8,s = "k1kyr),/i (22) 
adk = "kLI(e6),k - d e p A , i , /  (23 )  
a,P, = I,/* (24) 

Extended irreversible thermodynamics predicts that up to the second-order approxima- 
tion in the fluxes, one has (Jsu et sl 1988) 

wherein the non-identified eaefffeients A, g are the heat eanductivity and the 6hear 
viscosity while and r2 are relaxation times, T is the temperature< In view aP the 
generalised Gibbs relation (25). equations (22)-(24) take the form 

where j3 i s  a eae8ieient appearing in the expression of the entropy flux in estende8 
themrodynamies. By comparison with the linearid Maxwell=Cattanw type quat iam 
derived €or instanee in Jou el al(lSW8). it is  seen that the set (26)-(28) represent6 the 
non-dissipative parts of the evolution equations of e x t e n d  irreversible thermo- 
dynamics. Note a b  that (26) b identical to the entropy concsfvatisn law (16) with 
the entropy flux given by 

(30) 
1 J l  zz 5;: q k  I 
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It is also interesting to notice that the balance law for the energy is of the form 
ate = - ( q h  -pTpkiq/).h ( 3 1 )  

from which follows that the energy flux contains, besides the classical contribution qk, 
an extra term -pTPklq,. In extended thermodynamics, this term is not present in the 
energy equation but the entropy flux contains, besides qk/ T, an additional term given 
by pPklql. To see that there is no contradiction between extended thermodynamics and 
the theory presented here, let us define a new heat flux q ;  by 

9 ;  = qk -pTPkiq/. 

Then the energy law (31 )  takes the familiar form 

a,e  = 

while the entropy flux is given by 

1 J L  = T SI, -t ppklql (34 )  

in full accord with extended thermodynamics. Expressions ( 2 7 )  and (28) for the 
evolution of qk and Pk/ are unchanged as we have restricted ourselves to the linear 
approach. 

and q / . k  which are not 
found in the Maxwell-Cattaneo original relations but which are typical of extended 
thermodynamics. I t  must also be pointed out that the generating function has a 
well-defined meaning as it is identified with the internal energy. 

In view to discuss dissipative systems, it is convenient to reformulate the previous 
results in the entropy representation. If  we rewrite the bracket (19) in the entropy 
representation by using the transformation laws 

It is worthwhile to stress that one recovers terms like 

S S  S -,  S 
- 3 s ; l -  - s ,  S Y i  Se 3 - -  
S 

SS Se'aqk S q k  
S S  S 

3--  S 3 P h ,  Se - 
Spkl SPA/ 

one obtains 
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The entropy S is a Casimir functional for the bracket (35). We recall that a functional 
C is called a Casimir (or distinguished) functional corresponding to a given bracket 
{A, G} if {A, C} = 0 for all functions A. 

After integration by parts and identification of G with the total energy E, the 
evolution equation (18)  for A may be written as 

The time evolution equations for the set e, qk, Pkl derived from (36) read: 

ale = pl(Si2sq, ) . k  - p 2 ( s ; 2 s P , , s y , ) , k  (37 )  

arqk = - ~ I ( ~ ~ ' ) , k s ~ ~ ( ~ ~ ' ~ P h , ) , /  (38) 

= F 2 ( S , ' s y h ) , / *  (39) 

By taking for p I  and F~ the same values as in (29), one finds that (37)-(39) reduce to 
the same evolution equations (31 ) ,  (27) and (28) as before. Since the entropy is now 
the generating function, it is automatically conserved. Indeed it is directly checked that 

3.2. Dissipative evolution 

In dissipative systems, conservation of energy is still preserved but the entropy is a 
growing function of time obeying the evolution equation 

d,S = - J L . k  + U '  (41) 

wherein U '  is the non-negative rate of entropy production per unit volume: 

U '  3 0. (42) 

Dissipation is incorporated in equations (38 )  and (39) by following the same procedure 
as in section 2. One introduces a dissipative potential CP, which is a real-valued 
functional of s y h ,  s p h , ,  and eventually their gradients; CP is assumed to comply with 
the same conditions of minimum and convexity as presented at the end of section 2. 
As a consequence of these properties, it is suggested (Grmela 1984) to relate CP to the 
rate of entropy production by means of 

The bracket formulation in presence of dissipation is now modified as follows: 

dA 1 1 
d t  - V { A ,  G I + v [ A ,  GI (44) 
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wherein the non-dissipative part {A, G} is still given by (35) while the dissipative 
contribution [A, GI is such that 

It is directly checked that the evolution equations implied by the bracket formulation 
(44) can be written as 

ale = p l ( s 2 s q A ) . h  -~La(~~2~Ph l sq l ) . h  (46) 

In the case that @ is a quadratic function of s q h  and spAl, a particular form for @ is 

Relations (46)-(48) are then exactly the evolution equations derived in the linear 
version of extended thermodynamics (Jou et a1 1988), namely 

ate = - ( q A  -BTpklq/).~ ( 50) 

T1alqA = --A T.A + BA - q A  (51) 

T2atPLI = 2 h T q A . l -  si. ( 5 2 )  

The absence of terms in uLr is a consequence of the assumption that the system under 
consideration is at rest. 

If the functional s is chosen to depend in addition on the gradients qL, and PLl.,,, 
meaning that a non-local dependence is introduced, then everything remains the same 
except that we have to replace the Volterra functional derivatives 6 /6 , , ,  6/6,, by the 
variational derivatives 6 /6 , ,  - (6/ 6qi,l).,, 6/ 6 phi - (6/ 6 PAr ,,,)., . 

4. Conclusions 

Two kinds of arguments can be used to justify the validity of the time evolution 
equations of extended irreversible thermodynamics. First, it is the comparison of their 
consequences with experimental observations; second, it is their link with some more 
fundamental microscopic description. Both of these arguments may be found in Jou 
er a1 (1988). In the present paper, we add new arguments in favour of extended 
thermodynamics. We show that, in common with other modes of description such as 
classical mechanics, kinetic theory, electromagnetism, classical irreversible thermo- 
dynamics, the basic equations of extended thermodynamics (at least for an incompress- 
ible fluid at rest) share the property to possess a Hamiltonian structure. Moreover, the 
dynamical equations are generated by a functional that has the physical meaning of 
a free energy. In other words, we have seen that the systematic way followed in various 
branches of physics to derive the set of basic dynamical equations is also applicable 
within the context of extended irreversible thermodynamics. 
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It is also worth emphasising that the entropy function, used in extended thermo- 
dynamics is the same quantity that arises in the generalised Hamiltonian formalism 
in the form of the generating functional. This comparison provides a supplementary 
confirmation of the well-foundedness of the entropy introduced in extended thermo- 
dynamics. 

Concerning comparison with experimental data, it must be recalled that a gen- 
eralised Hamiltonian structure guarantees that the solutions of the corresponding 
dynamical equations agree with the equilibrium thermodynamic experience (i.e. the 
observation that systems that are isolated from any external influence reach, as time 
goes to infinity, a state at which they are well described by equilibrium thermodynamics). 
Another advantage of this Hamiltonian structure is that the mathematical methods 
that were developed in the general context of Hamiltonian systems now also become 
applicable within the framework of extended irreversible thermodynamics. 
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